# CO₂ case: Calculation of energy savings in the Topsøe SNOX<sup>™</sup> flue gas cleaning plants

### By Christian Strøbech

#### Background

Accoat has for many years coated parts for the SNOX<sup>TM</sup> plants all over the world. These coatings withstand the high temperatures in the desulphurisation unit and make the process possible.

Accoat uses a substantial amount of energy to produce these coatings and it is the scope of this paper to compare the amount of energy used in the coating process to the possible savings in the SNOX<sup>TM</sup> units.

## The SNOX<sup>™</sup> process

SNOX<sup>TM</sup> stands for that Sulfur and NOx gases, that effectively is removed from the flue gas.

In the removal of NOx from the gases Ammonia NH3 is mixed with the flue gas and the mixture led through a catalyst bed. The reaction is:

NO + NH<sub>3</sub> + 0,25 O2 = N<sub>2</sub>+ 1.5 H<sub>2</sub>O + 410 kJ/mol.

About 90% of the NOx is removed in this process.

In the following SO<sub>2</sub> reactor the gas passes another catalyst bed, in which about 98% of the SO<sub>2</sub> in the gas is oxidized to SO<sub>3</sub>:

 $SO_2 + 0.5 O_2 = SO_3 + 100 kJ/mol.$ 

The gas is led to the WSA condenser, a giant heat-exchanger 7 meter high, 1.5 meter wide and 2.5 meter long and equipped with 720 pcs. 7 meter long glastubes in which the gas is cooled to about 100°C. During the cooling in the tubes the  $SO_3$  is first hydrated to concentrated sulphuric acid gas:

 $SO_3 + H_2O = H_2SO4$  (gas) + 100 kJ/mol.

Later the sulphuric gas is cooled to under the de point and formation of 95% sulphuric acid is the result. This is collected in large fluoroplastic coated tanks until sold and shipped as pure concentrated sulphuric acid.

 $H_2SO4$  (gas) + 0.28  $H_2O = H_2SO4(95\% \text{ conc}) + 80 \text{ kJ/mol}.$ 



It can be calculated, that these 4 exothermic processes ad so much energy to the processes, that about 0.8% of the total energy production of the SNOX<sup>TM</sup> plant.

Below is calculated the amount of energy and release of CO<sub>2</sub> for one unit.

## Data for unit 2, the SNOX<sup>™</sup> power plant at Nordjyllandsværket (NEFO)

For the NEFO plant in Northern Jutland (Nordjyllandsværket) in Denmark these savings are calculated using the following data from 2007:

| Size of plant                          | 225 MW electricity + 42 MJ/s heat for households.             |  |  |
|----------------------------------------|---------------------------------------------------------------|--|--|
| 42 MJ/s=                               | 42x3600 = 151.200 MJ/h. 1 MJ = 0.27 kWh, so                   |  |  |
|                                        | 151.200 x 0.27 = 40.824 kWh = 41 MW                           |  |  |
| Actual Production 2007 =               | From (1): 269 + 41 = 310MW                                    |  |  |
| Operation hours                        | 4500                                                          |  |  |
| Coal consumption ton/h                 | 105                                                           |  |  |
| Coal used for SNOX <sup>™</sup> unit   | : 4500 x 105 = 472.500 tons/year.                             |  |  |
| Total coal for both units              | 1.206.037 tons/year                                           |  |  |
| Total emission CO <sub>2</sub> for     |                                                               |  |  |
| both units                             | 2.759.949 t/year                                              |  |  |
| $CO_2$ emission for SNOX <sup>TM</sup> | 472.500/1.206.37 x 2.759.949 = 1.081.072 tons/year            |  |  |
| Savings on SNOX <sup>™</sup> unit      | 0.8% of 472.500 tons coal = 3780 t coal/year                  |  |  |
| Less $CO_2$ on $SNOX^{TM}$ unit        | 0.8 % of 1.081.072 = 8649 ton CO <sub>2</sub> /year           |  |  |
| Coal savings per MW                    | 3780/310 = 12.2 tons coal saved per MW                        |  |  |
| CO <sub>2</sub> savings per MW         | 8649/310 = 15.0 tons CO <sub>2</sub> not released in the air. |  |  |
|                                        |                                                               |  |  |

#### Accoat's emission of CO<sub>2</sub> producing the parts for the WSA unit

Normally the so called tubeplates in the WSA tower, one upper one and one lower one is coated with a fully fluorinated fluoroplastic coating of a minimum thickness of  $550\mu$ . In practice the film thickness is about  $800\mu$ . This coating protects the steel plate for corrosion from the corrosive sulphuric acid and from the high temperature of the flue gas.

In the coating process Accoat liberates  $CO_2$  from the natural gas used for heating the plates up to about 400°C several times. For the calculations the following conversion factors are used:

For each 1000 KWh the power stations emits 494 kg  $CO_2$  (NESA). For each 1000 m<sup>3</sup> natural gas is emitted 2253 kg  $CO_2$ (DGC).



## Emission of CO<sub>2</sub> by coating of one tube plate with 8.5 m<sup>2</sup> fluoroplastic coating

| Process                                        | Electricity<br>KWh | Natural gas m <sup>3</sup> | Total amount CO <sub>2</sub> in kg |
|------------------------------------------------|--------------------|----------------------------|------------------------------------|
| Heat treatment                                 |                    | 60                         | 135                                |
| Sandblasting                                   | 165                |                            | 82                                 |
| Heating before priming                         |                    | 5                          | 11                                 |
| Heating when coating                           |                    | 120                        | 270                                |
| Electricity to air pressure when spraying etc. | 20                 |                            | 10                                 |
| Total CO <sub>2</sub> emitted                  |                    |                            | 508                                |

Normally 2 plates are coated per WSA unit, which makes the amount of  $CO_2$  emitted per unit to1016 kg or 1.016 tons. For the NEFO plant the emission will be about 72 x 1.016 = 73,2 tons of  $CO_2$ .

## Conclusion

Calculations based on data from the Ohio demonstration plant and from NEFO, the first commercial plant SNOX<sup>TM</sup> plant has shown, that the exothermic reactions in the process saves a lot of energy, thus about 0.8% less coal is used and similarly 0.8% less CO<sub>2</sub> is emitted to the atmosphere.

Topsøe has installed about 70 WSA plants (some with NOx cleaning also) all over the world and some larger than the NEFO unit. If it is assumed, that each plant contains 10 WSA units and that the coatings last for 10 ears (which is a low estimate). This amounts to totally 700 WSA units. NEFO has 72 units, which means that about 10 times the NEFO savings in coal and  $CO_2$  emission is the result. As the plates last more than 10 years the savings amount to at least 100 time those at NEFO.

This means that 378.000 ton coal is saved from being used and the atmosphere is spared from 864.900 tons  $CO_2$ .

Compared to this Accoat releases 700 x 1.016 = 711 ton of CO<sub>2</sub>.

## Acknowledgement

A thanks to Jens Hinke, R&D manager, SP Group, for calculating the savings of 0.8% using the SNOX<sup>TM</sup> process from the data in (3).

## References

- 1. Green account for NEFO (Nordjyllandsværket) 2007
- 2. Optimization of power plants using WSA/SNOX<sup>™</sup> technology, Peter Schoubye, Topsøe presentation, telephone: +45 4527 2468
- 3. SNOX<sup>™</sup> flue gas cleaning demonstration project. Analysis of the 35 MW Ohio demonstration plant. U.S. Department of energy, June 2000.

